Numerical modeling of the flow in stenosed coronary artery. The relationship between main hemodynamic parameters

نویسندگان

  • E. Shalman
  • Moshe Rosenfeld
  • E. Dgany
  • Shmuel Einav
چکیده

The severity of coronary arterial stenosis is usually measured by either simple geometrical parameters, such as percent diameter stenosis, or hemodynamically based parameters, such as the fractional flow reserve (FFR) or coronary flow reserve (CFR). The present study aimed to establish a relationship between actual hemodynamic conditions and the parameters that define stenosis severity in the clinical setting. We used a computational model of the blood flow in a vessel with a blunt stenosis and an autoregulated vascular bed to simulate a stenosed blood vessel. A key point in creating realistic simulations is to properly model arterial autoregulation. A constant flow regulation mechanism resulted in CFR and FFR values that were within the physiological range, while a constant wall-shear stress model yielded unrealistic values. The simulation tools developed in the present study may be useful in the clinical assessment of single and multiple stenoses by means of minimally invasive methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery

A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...

متن کامل

Numerical Modeling of Two-Layered Micropolar Fluid Through an Normal and Stenosed Artery

In the present work a two fluid model for blood flow through abnormally constrictedhuman artery (stenosed artery) has been developed. The model consists of a core region of suspensionof all erythrocytes assumed to be micro-polar fluid so as to include the micro-structural effects inaddition to the peripheral-layer viscosity effects, and a peripheral plasma layer free from cells of anykind of Ne...

متن کامل

Mathematical modeling of blood flow in a stenosed artery under MHD effect through porous medium

In this investigation, a mathematical model for studying oscillatory flow of blood in a stenosed artery under the influence of transverse magnetic field through porous medium has been developed. The equations of motion of blood flow are solved analytically. The analytical expressions for axial velocity, volumetric flow rate, pressure gradient, resistance to blood flow and shear stress have been...

متن کامل

Evaluation of the Effect of Simplified and Patient-specific Arterial Geometry on Hemodynamic Flow in Stenosed Carotid Bifurcation Arteries

Numerous CFD studies have been performed on the motivation to elucidate the role of hemodynamic forces in the development of atherosclerosis in the coronary arteries and the carotid bifurcation artery. In order to improve CFD predictions, and to consider CFD as a clinical diagnostic or treatment planning tool, there is a need to ensure its accuracy and reliability through a systematic approach ...

متن کامل

Numerical Investigation of Angulation Effects in Stenosed Renal Arteries

Background: Numerical study of angulation effects of renal arteries on blood flow has been of great interest for many researchers.Objective: This paper aims at numerically determining the angulation effects of stenosed renal arteries on blood flow velocity and renal mass flow.Method: An anatomically realistic model of abdominal aorta and renal arteries is reconstructed from CT-scan images and u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers in biology and medicine

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2002